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SUMMARY

This paper presents an adaptive mesh moving technique for three-dimensional (3D) fluid flow problems
that involve moving fluid boundaries and fluid–solid interfaces. Such mesh moving techniques are an
essential ingredient of fluid–structure interaction methods that typically employ arbitrary Lagrangian–
Eulerian (ALE) frameworks. In the ALE frame, the velocity field representing motion of the underlying
continuum is integrated in the fluid flow equations. In the discretized setting, the velocity field of the
underlying continuum gives rise to the mesh displacement field that needs to be solved for in addition
to the flow equations and the structural equations. Emphasis in the present work is on the motion and
deformation of 3D grids that are composed of linear tetrahedral and hexahedral elements in structured
and unstructured configurations. The proposed method can easily be extended to higher-order elements
in 3D. A variety of moving mesh problems from different fields of engineering are presented that show
the range of applicability of the proposed method and the class of problems that can be addressed with
it. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the modelling of fluid–structure interaction (FSI) problems, one needs to write the flow equations
in an arbitrary Lagrangian–Eulerian (ALE) frame of reference wherein the underlying physical
domain can move and deform independently of the motion of the fluid particles (see e.g. [1–4] and
references therein). This class of problems can also be addressed via the space–time finite element
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approaches wherein the space–time finite element slabs are oriented in time to accommodate
the spatial deformation of the computational grids. Space–time methods for FSI problems were
proposed by Tezduyar and coworkers [5–9] and by Masud [10] and Masud and Hughes [11].
An equivalence between the ALE-based methods and slanted space–time methods for FSI was
formally established in [10, 11].

In coupled solution strategies for FSI problems, an essential ingredient is the ability to move
the fluid mesh nodes to accommodate the deformation of the time-dependent physical boundaries
and at the same time maintain the quality of the computational grids for successive time-step
calculations. From the viewpoint of computational efficiency, the mesh moving scheme should
yield a good fluid mesh with the least amount of computational expense. For a review of the
various recent approaches for mesh motion, see e.g. [5, 6, 12–22] and references therein.

In Masud et al. [4], we presented a 2D adaptive mesh moving scheme for structured and
unstructured meshes. Various mesh types comprising linear triangular and quadrilateral elements
were tested for a range of physical problems from various fields of engineering. The algorithm was
integrated in a multiscale/stabilized formulation for the incompressible Navier–Stokes equations
for 2D moving boundary flows [3, 23]. In [24], it was shown that an arbitrary motion of the
computational grid can potentially induce instability in the numerical computations and it was
suggested that the mesh motion should be such that it also minimizes the local relative velocity.

Present paper presents an extension of the 2D scheme to 3D, and emphasis is on large-scale
meshes of industrial strength. Like the 2D case presented in [4], the present formulation accom-
modates different 3D element types in the same computational domain which is a very attractive
feature from practical problem solving viewpoint. An outline of the paper is as follows. Section 2
presents the boundary value problem for mesh motion that gives rise to a modified variational form
that prevents the inversion of smaller elements in the boundary layer region. Numerical experi-
ments with linear hexahedral and tetrahedral elements are presented in Section 3 and concluding
remarks are presented in Section 4.

2. THE MODIFIED EQUATION FOR MESH MOTION

We indicate the computational fluid domain by � where � ⊂ Rnsd is a bounded open set with
piecewise smooth boundary �; nsd = 3 denotes the number of spatial dimensions. We indicate the
moving and fixed parts of the boundary via �m and �f, respectively. The boundary � admits the
following decomposition:

�= �m ∪ �f (1)

and

�=�m ∩�f (2)

In Masud et al. [4], we proposed a modified equation for mesh rezoning that was designed to move
the finer zones of the mesh that usually lie in the boundary layer regions, with least amount of
distortion. To achieve this end, the weak form of Laplace equation for mesh motion is modified by
adding to it a least-square term. The formal statement of the boundary value problem for the mod-
ified equation is: given g, the prescribed mesh displacement at the moving boundary, find the mesh
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displacement field u : � → Rnsd , such that

∇ · ([1 + �]∇)u= 0 (3)

u= g on �m (4)

u= 0 on �f (5)

Equations (3)–(5) represent the governing equation, the moving, and the fixed boundary conditions,
respectively. Spaces relevant to the boundary value problem are

S ={u | u∈ (H1(�))nsd, u= g on �m and u= 0 �f} (6)

V = {w |w∈ (H1
0 (�))nsd} (7)

where H1(�) denotes the space of functions in L2(�) with generalized derivatives also in L2(�).
H1
0 (�) is a subset of H1(�), whose members satisfy zero boundary conditions.
In order to understand the role of � in Equation (3), consider a typical unstructured and a

graded fluid mesh. Such meshes have local refinement in the regions of boundary layers to capture
the small-scale effects. For FSI problems involving moving boundaries, objective is to move the
smaller elements in the boundary layers together with the interfaces with the least amount of
distortion so as to attain well-conditioned meshes for subsequent time steps. This is achieved via
imposing the constraint condition over the elements that effectively introduces additional stiffness
in the element which is inversely proportional to the relative size of the element in the mesh [4].
To understand the role of the constraint condition, consider a 2-node linear element with nodes i
and j , and the nodal displacements at the nodes indicated by uhi and uhj , respectively. Goal is to
limit the relative difference in the value of the displacement field at the two nodes to be less than
the element length he, i.e.

|uhi − uhj |��he (8)

⇒ |∇uh |�� (9)

where he is the length of the element, and � ∈ [0, 1) is a tolerance parameter for element distortion.
Consequently, the case of least distortion in smallest elements is attained in the limit as � → 0,
namely, for multidimensional case,

∇uh = 0 (10)

This condition can be applied element wise, and consequently leads to a modification of the
underlying Laplace equation typically used for mesh moving. The constraint is imposed in a
weighted form thereby introducing the function � in (3). In the discrete setting, this gives rise
to the element-based weight function �e which is a non-dimensional and positive function in �e.
This bounded, non-dimensional function is designed such that it imposes condition (10) rather
strictly over the smaller elements as compared to that over the larger elements, thus introducing
a stiffening effect that is inversely proportional to the size of the elements. This spatially varying
stiffening effect causes the mesh to deform non-uniformly by translating most of the deformation
to the larger elements in the mesh that usually lie in the far field region.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:923–944
DOI: 10.1002/fld



926 H. KANCHI AND A. MASUD

2.1. Design of the weight function for mesh motion

A simple definition of the discrete �e proposed in Masud and Hughes [11] is

�e = 1 − Vmin/Vmax

V e/Vmax
(11)

In the context of 3D elements, V e, Vmax and Vmin represent the volumes of the current, the largest
and the smallest elements in a given mesh, respectively. The plot shown in Figure 2 is the variation
of this weighting function with respect to the ratio of the volume of the current element and
the volume of the largest element in a 3D hexahedral fluid mesh shown in Figure 1. This trend
is similar to that for the 2D case as presented in [4]. Because of the spatially varying stiffness
introduced in the fluid mesh, the elements adjoining the moving boundaries or the solid–fluid
interface boundaries translate with the interface with the least amount of distortion, while the
deformation is largely accommodated by the larger elements that behave relatively soft and are
usually located in the far fields.

Remarks

1. In our simulations, we have used an automatic control on the change in the condition number
of the element by comparing the Jacobian of the element in the current (deformed) mesh with
its corresponding value in the initial (undeformed) mesh. In our calculations, if the current
Jacobian for a given element is either smaller or larger than a specified percentage of its
corresponding value in the initial undeformed mesh, the calculations are frozen in time and
a new mesh is constructed around the current location of the bodies.

2. Ideas stemming from the definition of well-conditioned elements in terms of the side lengths
and interior angles of their underlying reference elements can be brought into play via a
tensor representation of the weight function �. We will explore these ideas in our subsequent
work.

2.2. The finite element form

Let Sh and V h represent the finite-dimensional subspaces of S and V , respectively, that involve
piecewise polynomial interpolations. The finite element form can be expressed as: find uh ∈ Sh

such that for all wh ∈ V h

B(wh,uh) = L({wh}) (12)

where the bilinear form is

B(wh, uh) = (∇wh,∇uh) +
nel∑

e=1
�e(∇wh, ∇uh)�e (13)

Remark
A salient feature of this formulation is that standard 3D Lagrange shape functions can be employed
in (13) and they will yield a stable method.
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3. NUMERICAL EXPERIMENTS

The formulation has been implemented for 3D linear tetrahedral and hexahedral elements. Full
quadrature is employed for numerical integration. For linear tetrahedral elements, the derivatives of
the shape functions are constants and therefore one-point integration suffices for the calculation of
the element stiffness matrix. Hexahedral elements on the other hand employ 2× 2× 2 integration
rule. Since the volume of one hexahedral element can be divided into six non-overlapping tetrahedral
elements, the cost of computation of system tangent matrix with an equivalent brick mesh that can
be obtained by keeping the number of nodes constant between the two mesh types, is comparable.
However, the tetrahedral elements lead to a smaller band width, and therefore considerable savings
in the solution of the problem for mesh displacement field can be attained. Besides, from a practical
viewpoint it is easy to discretize 3D domains via tetrahedral elements than via hexahedral elements.

In the following section, we present example problems from various fields of fluid mechanics
that involve moving and deforming boundaries. Sections 3.1 to 3.3 present relatively simpler 3D
problems that are designed with the aim of verifying the proposed method by comparing the
original and the deformed mesh configurations. Sections 3.4 to 3.8 present problems from various
industrial level applications.

3.1. Flexible deformation of multiple cylinders in an unstructured hexahedral mesh

The first test case is that of three flexible cylinders in the fluid domain. This is an example from
the domain of heat transfer problems where cooling fluid flows around the flexible pipes. The 3D
mesh (showing only the surface mesh) of the cylinder-block model is shown in Figure 1. Mesh
has 7824 nodes and 5240 elements. Only four of the six faces are given prescribed zero boundary
displacement. The faces containing the intersections with the cylinders are free to move and evolve
in their respective planes. The three cylinders are given prescribed deflection and translation via
functions g1i , g

2
i and g3i , respectively (see Equation (14)), where i = 1, 2 is the X and Y spatial

dimension; A0i and B0i are given constants; Lz is the length of the cylinder, and x3 represents
the coordinate of the nodal points along the length of the cylinder. The nodes are constrained to
move in the x3 direction. The first and third cylinder move in phase and the middle cylinder moves
with a lag of 180◦. Figure 2 shows the variation of �e with respect to the ratio of the volume
of the current element and the volume of the largest element in the mesh shown in Figure 1.
Configurations of the mesh at various time levels are shown in Figures 3–5.

Ai (X) = A0i sin(�x3/Lz) + B0i

g1i (X, t) = g3i (X, t) = Ai (X) sin(4�t)

g2i (X, t) = Ai (X) sin(4�t + �)

g3(X, t) = 0

(14)

3.2. Flexible deformation of multiple cylinders in an unstructured tetrahedral mesh

As the geometric configuration of the computational domain gets intricate, the generation of a
structured mesh comprising hexahedral elements becomes a challenging task. In such situations,
tetrahedral elements are typically employed because they provide considerable flexibility in mesh
generation around complex geometric shapes. Furthermore, the element stiffness matrix (for mesh
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Figure 1. Unstructured hexahedral mesh with three flexible cylinders.
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Figure 2. Weighting function � for the hexahedral mesh shown in Figure 1.
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Figure 3. Spatial configuration of the flexible cylinders at t = 0.8 s.
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Figure 4. Top view of the mesh showing deflections and translations in XY plane at t = 0.3 s.

motion part of the problem) for linear tetrahedral elements can be computed via one-point integra-
tion (because it is composed of constant strain–displacement matrices) and this can considerably
economize computations.

The problem description of the current test case is same as that in Section 3.1, and the cylinders
are moved with prescribed motion given in (14). Figure 6 shows the unstructured mesh of 4-node
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Figure 5. Top view of the mesh showing deflections and translations in XY plane at t = 0.8 s.

X

Y

Z

Figure 6. Unstructured tetrahedral mesh of three flexible cylinders.

tetrahedra containing 9132 nodes and 43 648 elements. The weighting function � as a function of
the ratio of element size for this mesh is shown in Figure 7. Figures 8 and 9 show the side and
top views of deflection and translation of the flexible cylinders.
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Figure 7. Weighting function � for the tetrahedral mesh shown in Figure 6.
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Figure 8. Spatial configuration of the flexible cylinders at t = 0.3 s.
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Figure 9. Top view of the mesh showing deflections and translations in XY plane at t = 0.3 s.

3.3. Free oscillation of a sphere in an unstructured tetrahedral mesh

This test case is designed to check the performance of the proposed method on the motion of
interfaces that are completely embedded in the surrounding fluid domain. The mesh around the
sphere contains 5861 nodes and 30 930 linear tetrahedral elements. The surface mesh on the sphere
and the boundary mesh of the computational domain is shown in Figure 10. The sphere is given
a prescribed sinusoidal motion in the YZ plane. The simulation of the mesh motion is shown in
Figure 11, where three superposed frames show the positions of the sphere at various instants
during motion.

3.4. Aerodynamic applications: YF-17 jet simulations

Figure 12 shows a typical mesh around geometric configuration of YF-17 jet. The mesh is composed
of 97 104 nodes and 528 925 elements. The definition of �e used for simulations with brick and
tetrahedral elements works well for meshes that have up to three orders of mesh refinement. For
typical industrial applications as shown in Figure 12, there is six orders of magnitude difference in
the sizes of the largest and the smallest elements. For such highly graded meshes, the definition of
�e given in (11) leads to a very high numeric value for the elements in the boundary layer region
(see, e.g. Figure 13). This causes ill-conditioning in the system tangent matrix, thus causing mesh
locking that leads to zero mesh displacements. This locking effect can be seen at the tip of the
wing and the tail in Figure 14. In order to avoid locking, we put a limit on the numeric value of
�e. Our numerical tests have indicated that if we limit V e

limit = 0.1× Vmax then value of �e given
by (11) does not result in ill-conditioning of the tangent matrix for mesh motion.

3.4.1. Aerodynamic application: YF-17 rolling motion. The mesh motion simulations for the
YF-17 jet were carried out using the new definition for �e. The rolling motion is simulated
by rotating the nodes along the longitudinal axis of the plane. Figure 15 shows two superposed
frames for two different rotated positions.
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Figure 10. Tetrahedral mesh around a sphere.
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Figure 11. Multiple superimposed frames showing the motion of the submerged sphere.
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Figure 12. Surface mesh of YF-17 jet configuration.
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Figure 13. Value of �e as a function of non-dimensionalized volume of elements for the aircraft mesh.
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Figure 14. Mesh locking at the tips of wing and the tail.
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Figure 15. Two superimposed frames showing the rolling motion of the jet.

3.4.2. Pitching motion of the jet around its centre of gravity. This simulation is pitching motion
of the jet about its centre of gravity. Such simulations are presented by Farhat and coworkers [25].
The nodes of the jet are moved around its centre of gravity with a sinusoidal motion in XZ plane.
The simulation of the jet at various instants is shown in Figures 16–18.
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Figure 16. Surface mesh on the jet.

Figure 17. A representative configuration during the pitching motion.

3.4.3. A method to reduce the cost of computation. In fluid–structure interaction problems, there
are situations where it is important to move the mesh in the boundary layers together with
the solid interfaces with virtually no distortion. This typically happens when the submerged
structure undergoes large translations and rotations, but the mechanical strains in the structure
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Figure 18. A later configuration during the pitching motion.

are small. Since in unstructured and graded meshes, elements are invariably clustered around
the moving interfaces, so moving these elements in a glued fashion can serve two purposes:
(i) it can help in maintaining the quality of grid in the boundary layers for subsequent time
step calculations, and (ii) it can help in reducing the size of the mesh motion problem. For
the nodes that lie in the glued region, the equations governing the mesh motion are not solved.
Rather the location of nodes is updated based on the prescribed displacement dictated by rigid-
body motion of the body, thus considerably reducing the number of equations to be solved.
One easy way to accomplish this is to create an imaginary box around the structure and then
moving the entire boxed region with the prescribed motion dictated by rigid-body motion of the
confining structure. Similar ideas where automatic mesh moving technique has been combined with
structured layers of elements undergoing rigid-body motions or deforming like a solid extension of
the interface have been pursued by Hughes et al. [2], Masud and Hughes [11], Nkonga [18], and
Tezduyar [8, 26].

In the case of YF-17 jet, we create and imaginary box with length equal to twice the dimensions
of the plane. This causes 43 432 nodes around the jet to have a prescribed motion as compared to
9772 nodes when prescribed motion is only applied on to the surface of the jet. The computational
time required for the two cases on a 2 GHz single processor PC is shown in Figure 19. From
this graph it is seen that for the 10 steps used to solve the problem, there is approximately 40%
reduction in the time at every step in the case of the glued layered method.

3.5. Rotational motion of a submarine propeller

This simulation represents the class of FSI problems where parts of the mesh are in relative sliding
motion [27, 28]. The current problem is of interest in marine engineering where FSI coupling
effects are produced by rotating propellers that provide the necessary thrust for the propulsion
of submarines and surface ships. Rotation of propellers in surrounding fluids is typically solved
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Figure 20. Tetrahedral mesh for submarine FSI problem.

by generating a sequence of fluid meshes that rotate with the propeller and therefore distort
and shear with time. In these simulations when elements in one mesh get excessively sheared
a new mesh is generated and the flow field is projected onto the new mesh using projection
techniques. In this work, we advocate the idea of dividing the computational domain into two
parts with the following characteristics: (i) one part of the domain that is in the form of a
cylinder that encompasses the propeller and thus rotates together with the propeller, and (ii) the
second part that discretizes the remaining region. This non-overlapping discretization leads to the
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Figure 21. Surface mesh of submarine and propeller.

Figure 22. Zoomed view of the surface mesh of the propeller.

generation of a common sliding interface between the cylinder and the encasing mesh. From
the perspective of mesh moving algorithm, the technical advantage is of making the cylinder rotate
with the propeller without any distortion of the discretization inside the cylinder. This can help
avoid shearing of the elements and distortion of the computational domain around the propeller.
This cylinder then slides past the encasing grid with meshes sliding at the common interface. In
this framework, one can employ ideas from discontinuous Galerkin methods to glue the flow field
between the rotating cylinder and the stationary surrounding grid.
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Figure 23. Zoomed view of the position of the propeller.

Figure 24. Zoomed view of the rotated propeller at a later instant.
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Figure 25. Two superimposed frames showing the relative rotation of the propeller.

Figure 26. Unstructured tetrahedral mesh of the heart.
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Figure 27. Close-up view of the left ventricle.

Figure 28. Left ventricle wall motion. The black colour shows the undeformed mesh and the
green lines show the deformed mesh.
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Figure 20 shows the surface mesh on the submarine and the bounding surface of the com-
putational domain, while Figure 21 shows the close-up view of the longitudinal profile of the
submarine. The unstructured tetrahedral mesh contains 19 510 nodes and 105 664 elements. The
propeller model is meshed containing 14 892 nodes and 81 226 elements. These two meshes are
combined and the propeller nodes are given rotational motion, with the rest of the mesh kept sta-
tionary. Figure 22 shows a close view of the cylinder where the surface mesh around the propeller
can clearly be seen. The simulation of the rotating propeller at different time steps is shown in
Figures 23 and 24. Figure 25 shows two configurations of the rotating mesh by superimposing the
rotated propeller configurations.

3.6. Bio-fluid application: Beating heart simulation

This is a FSI problem from the domain of bio-fluid dynamics and simulates the beating of heart.
The mesh has 148 516 nodes and 728 321 elements [29, 30]. The nodes of the atriums are given a
sinusoidal motion while the ventricles are given a motion which lags 180◦ to that of the atriums.
The heart mesh is shown in Figure 26. Figure 27 shows the close-up view of the left ventricle and
the surface mesh for the chamber together with the superimposed outer surface mesh. Figure 28
shows the left ventricle of the heart, where undeformed and deformed meshes are superimposed
to show the beating of the heart.

4. CONCLUSIONS

We have presented an adaptive mesh moving technique for three dimensional structured and
unstructured grids that are composed of linear tetrahedral and hexahedral elements. This method
can be extended to higher order elements in 3D. Representative examples from different fields of
engineering show the range of applicability of the proposed method.
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